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This paper compares in detail the lattice Boltzmann method and an isothermal
Navier–Stokes method. It is found that these two methods are closely related to
each other. Both methods satisfy similar macroscopic governing equations in their
continuous forms, but they differ from each other in their discrete forms. Besides
the obvious differences in stencils for spatial discretization, these two methods also
differ from each other in temporal discretization. Numerical tests show that these
differences have little impact on the simulation of velocity fields but do generate
noticeable differences in the pressure fields. Both methods are capable of simulating
transient flows and exhibit oscillatory behavior due to the propagation of pressure
waves. The lattice Boltzmann method may be more accurate for capturing the pressure
waves. c© 2002 Elsevier Science (USA)

I. INTRODUCTION

The lattice Boltzmann method (LBM) as a new computational fluid dynamics (CFD)
tool has received considerable attention in recent years (see, e.g., [1]). This method can
be regarded as either an extension of the lattice gas automaton [2, 3] or a special dis-
crete form of the Boltzmann equation from kinetic theory [4]. Although the connec-
tion between the gas kinetic theory and hydrodynamics has long been established [5],
the lattice Boltzmann method needs additional special discretization of velocity space to
recover the correct hydrodynamics. Due to the very same reason, the LBM works ex-
actly opposite traditional CFD methods in deriving working schemes: LBM uses Navier–
Stokes equations as its target while traditional CFD methods use Navier–Stokes equations
as their starting point. Not surprisingly, the exact relation between the LBM and tradi-
tional CFD schemes based on directly solving Navier–Stokes equations has not been well
understood.
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This lack of a clear relation between the LBM and other CFD methods makes it difficult
to assess the relative strengths of LBM and traditional CFD methods. In fact, most of the ex-
isting knowledge of the LBM’s performance has been accumulated through numerical LBM
experiments (e.g., [6–8]). Although these benchmark studies demonstrated the LBM’s ac-
curacy in simulating fluid flows, few comparisons were made of the relative computational
efficiency of the LBM and other CFD methods. Part of the reason for this is that it is unclear
with which classical method LBM should be compared. Most of the conventional CFD
methods have been developed either for incompressible flow or for strongly compressible
flow. The LBM is applicable to the isothermal flow regime, i.e., the weakly compress-
ible, low-Mach-number limit. This flow regime is traditionally treated as “incompressible,”
although there are CFD methods constructed to compute the Navier–Stokes equations in
this regime. The argument for treating very low-Mach-number flows as incompressible
is pragmatic rather than physical—the direct calculation of the isothermal Navier–Stokes
equations requires time steps sufficiently small to resolve acoustic waves across a computa-
tional cell. This time step may be vastly smaller than the time scales of interest for the bulk
fluid motion. Thus the computational cost of the many additional time steps required by an
isothermal calculation may be vastly higher than the cost of an incompressible calculation.
Of course, in reality there is no fluid or flow that is absolutely incompressible (i.e., with
infinite acoustic velocity).

The artificial compressibility (AC) method was introduced by Chorin [9] 30 years ago.
The basic idea was to substitute an artificially low sound speed and to compute the result-
ing isothermal equations using as large a time step as permissible from the standpoint of
numerical stability. The intent was not to produce time-accurate results but to accelerate
the convergence to a time-steady, nearly incompressible field. For the circumstance of an
LBM wherein the acoustic velocity is not scaled to that of an actual fluid being simulated,
the LBM method also resembles an AC method.

The goal of this study is to begin to bridge the gap between the isothermal equations,
artificial compressibility methods, LBM and incompressible Navier–Stokes methods.
To be specific, we demonstrate that the lattice Boltzmann method is closely related to
the numerical methods for solving the isothermal equations, and hence also to the artificial
compressibility (AC) method proposed by Chorin. This connection has been conjectured
before. He and Luo [10] demonstrated that in the limit of incompressible flow for which
LBM is most suitable, the lattice Boltzmann equation recovers governing equations similar
to the isothermal Navier–Stokes equations that the artificial compressibility method was
based on. What has been missing in the literature is a direct comparison of the discrete
forms and a careful numerical comparison of these methods. As revealed by this study,
the LBM indeed differs in its discrete form from the finite-difference representations of
the isothermal Navier–Stokes equations as given by the artificial compressibility method.
However, as our numerical tests show, these differences have little impact on the simulated
velocity fields, although they do generate noticeably different pressure fields.

To simplify our analysis, this study only focuses on single-phase flow. We notice that, as
a simulation tool based on kinetic theory, the lattice Boltzmann method has the potential to
incorporate microscopic physics, such as intermolecular interactions. This feature enables
use of the LBM to study effectively many complex phenomena, including spinodal decom-
position [11], amphiphilic fluid flows [12], and multiphase flows [13]. Although this work
does not touch on these topics, it helps to evaluate the accuracy and efficiency of the lattice
Boltzmann models for these complex phenomena for future use.
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The rest of the paper is organized as follows. Section II describes the lattice Boltzmann
method in the weakly compressible limit. Derivations were made to regroup the lattice
Boltzmann equation into a form comparable with the artificial compressibility method.
Section III presents detailed comparisons between the LBM and the artificial compressibil-
ity method. Section IV presents numerical comparisons of these two methods. Section V
concludes the paper.

II. LATTICE BOLTZMANN EQUATION

Unlike the Boltzmann equation, the lattice Boltzmann equation works best for isother-
mal, weakly compressible flow. The reason for this has been discussed extensively in the
literature. We refer interested readers to the review by Chen and Doolen [1]. Here we
only focus on the lattice Boltzmann method applied to a single-phase, isothermal, weakly
compressible flow.

The lattice Boltzmann BGK model for Navier–Stokes equations for weakly compressible
flows has the form

f�(x, t + �t ) = f (x − M−1ea�t , t) − f (x − M−1ea�t , t) − f eq (x − M−1ea�t , t)

�
�t , (1)

where f� is the density distribution function, ea is the discrete velocity (lattice velocity), �

is the relaxation time, and �t is the simulation time step. The equilibrium distribution f eq
�

is given by

f eq
� = w�[pM2 + ea · uM + 0.5(ea · u)2 M2 − 0.5u2 M2], (2)

where M = U/cs is the Mach number, with U being a characteristic macroscopic velocity
and cs being the sound speed; w� is the integral coefficient. All the variables are dimen-
sionless. The characteristic variables are �0U 2 for pressure (�0 for fluid density), U for
macroscopic velocity, L for length, L/U for time, and cs for lattice velocity. Here we use
a scaling of the lattice velocity which differs from those in conventional lattice Boltzmann
literature. In the conventional lattice Boltzmann literature, the lattice velocities are usually
scaled by the lattice speed c = �x/�t .

The pressure and macroscopic velocity are calculated using

p = M−2
∑

�

f�, (3)

u = M−1
∑

�

f�ea . (4)

The choice for the underlying lattice velocities and their corresponding integral coeffi-
cients is not unique, but they must satisfy [10, 14]

∑
�

w�e2n+1
a = 0, (5)

∑
�

w�e2n
a = �n, (6)

for n = 0, 1, 2; � is the delta function as defined in [15].
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To second order in the Enskog–Chapman expansion, the above lattice Boltzmann BGK
model recovers the macroscopic equation [4]

M2 ∂p

∂t
+ ∇ · u = 0, (7)

∂u
∂t

+ u · ∇u = −∇ p + 1

Re
∇2u + 1

Re
∇(∇ · u), (8)

where Re = U L/� is the Reynolds number, with � the kinematic viscosity. In nondimen-
sional form, the relaxation time is related to the Reynolds number and Mach number via
� = M2/Re + 0.5�t .

The above lattice Boltzmann model has a linear dependence on pressure. This implies
that we can replace the real pressure by the pressure perturbation around its average value.
With this substitution, we can ensure that the nondimensional pressure term is first order.

Equations (7) and (8) are not the incompressible Navier–Stokes equations except for
steady flows. In fact, they bear a striking similarity to the perturbed equations used by
Chorin in the artificial compressibility method for the steady Navier–Stokes equations [9]

∂p

∂t
+ c2∇ · u = 0, (9)

∂u
∂t

+ ∇ · (uu) = −∇ p + 1

Re
∇2u. (10)

The parameter c in the artificial compressibility method corresponds to 1/M in the lattice
Boltzmann method. The only difference between these two methods is that the momentum
equation of the lattice Boltzmann method has the additional term of ∇(∇ · u)/Re. This term
vanishes when steady states are approached.

To compare further the lattice Boltzmann method with the artificial compressibility
method, we transform the above LBM model by expanding the right hand side of Eq. (1)
around (x, t),

f�(x, t + �t ) = f eq
� (x − M−1ea�t , t) +

(
1 − �t

�

)
f 1
� (x − M−1ea�t , t)

= f eq
� − �t M−1(ea · ∇) f eq

� + �2
t

2
M−2(ea · ∇)2 f eq

� + �3
t

6
M−3(ea · ∇)3 f eq

�

+
(

1 − �t

�

)[
f 1
� − �t M−1(ea · ∇) f 1

� + �2
t M−2

2
(ea · ∇)2 f 1

�

]
, (11)

where f 1
� = f� − f eq

� . This expansion presumed a condition of �t/M � 1, which is usually
satisfied in most simulations. Summation of Eq. (11) over � yields

p(x, t + �t )M2 = p(x, t)M2 − �t∇ · u + �2
t

2
[∇2 p + ∇ · A] − �3

t M−2

2
∇∇ : S

− (� − �t )
�2

t M−2

2
∇∇ : S, (12)

or

p(x, t + �t ) = p(x, t) − �t M−2∇ ·
[

u − �t

2

(
∇ p + A − 1

Re
∇ · S

)]
, (13)
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where A = ∇ · (uu) is the convection term and S = ∇u + (∇u)T (see the Appendix for
more details of the moment summations of f eq and f 1).

Multiplying Eq. (11) by ea and summing over �, we have

u(x, t + �t )M = u(x, t)M − �t M(∇ p + A) + �2
t M−1

2
[∇2u + 2∇(∇ · u)]

+ (� − �t )�t M−1[∇2u + ∇(∇ · u)], (14)

or

u(x, t + �t ) = u(x, t) − �t

[
∇

(
p − �t

2
M−2∇ · u

)
+ A − 1

Re
∇ · S

]
. (15)

To order �2
t , we have

p̄ = p(x, t) − �t

2
M−2∇ · u + O

(
�2

t

)
, (16)

ū = u(x, t) − �t

2

(
∇ p + A − 1

Re
∇ · S

)
+ O

(
�2

t

)
, (17)

where p̄ = [p(x, t + �t ) + p(x, t)]/2 and ū = [u(x, t + �t ) + u(x, t)]/2. With the help of
Eqs. (16) and (17), the discrete equations for pressure and velocity finally become

p(x, t + �t ) = p(x, t) − �t M−2∇ · ū + O
(
�3

t

)
, (18)

u(x, t + �t ) = u(x, t) − �t

[
∇ p̄ + A − 1

Re
∇ · S

]
+ O

(
�3

t

)
. (19)

As shown in the next section, Eqs. (18) and (19) are closely related to the evolution equation
of the artificial compressibility method.

III. COMPARISON OF THE LATTICE BOLTZMANN METHOD WITH

THE ARTIFICIAL COMPRESSIBILITY METHOD

The artificial compressibility (AC) method was first proposed by Chorin [9] for solv-
ing approximating the steady-state incompressible Navier–Stokes equations. This method
introduces a perturbed continuity equation, Eq. (9). For incompressible flow, Eq. (9) has
no physical meaning except for the steady state. The coefficient c is merely a numerical
parameter controlling the convergence rate to steady states. For compressible flow, however,
Eq. (9) does have a physical meaning. In fact, it can be derived from the Navier–Stokes
equations for compressible fluids with the equation of state, p = c2� , where c is the sound
speed. This is why the name “artificial compressibility method” is used in the first place. In
this regard, this method is actually not “artificial” if applied to weakly compressible fluids
with a constant sound speed. Under this circumstance, it is an isothermal Navier–Stokes
method.

There are many ways to discretize the artificial compressibility method. A typical one
uses explicit discretization in time and staggered discretization in space. It has been shown
that the staggered grid is necessary to prevent unsatisfactory pressure oscillations [17]. A
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FIG. 1. A typical marker-and-cell (MAC) mesh.

useful staggered grid is the marker-and-cell (MAC) grid introduced by Harlow and Welch
[18] (Fig. 1). Note that velocities and pressures are evaluated at different grid points. The
discrete equations of the artificial compressibility method on a MAC grid have the form

1

�t

(
un+1

i+1/2, j − un
i+1/2, j

) + an
i+1/2, j + �x pn

i+1/2, j = 1

Re
∇2

h un
i+1/2, j , (20)

1

�t

(
vn+1

i, j+1/2 − un
i, j+1/2

) + bn
i, j+1/2 + �y pn

i, j+1/2 = 1

Re
∇2

hvn
i, j+1/2, (21)

1

�t

(
pn+1

i, j − pn
i, j

) + c2
(
�x un+1

i, j + �yv
n+1
i, j

) = 0, (22)

where the difference operators �x , �y , and ∇2
h are defined by

�x fi, j = 1

�x

(
fi+1/2, j − fi−1/2, j

)
, (23)

�y fi, j = 1

�x

(
fi, j+1/2 − fi, j−1/2

)
, (24)

∇2
h fi, j = (�x�x + �y�y) fi, j . (25)

The terms an
i+1/2, j and bn

i, j+1/2 are the approximations of the components of vector A. Obvi-
ously, the discretization stencils of the artificial compressibility method are quite different
from those in the lattice Boltzmann method. However, if we neglect this difference and use
the continuous form, Eqs. (20)–(22) can be written as

un+1 = un − �t

(
∇ pn + An − 1

Re
∇2un

)
, (26)

pn+1 = pn − �t c
2∇ · un+1. (27)

Considering the fact that the superscripts n + 1 and n stand for the new and old time steps
and c = 1/M , it is easy to make a direct comparison between the discrete equations of the
lattice Boltzmann method and the artificial compressibility method. The most important
difference is that the values of the velocity and pressure averaged over n and n + 1 are used
in the lattice Boltzmann method in calculating new variables. In the artificial compressibility
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FIG. 2. Comparison of velocity field evolution simulated using the lattice Boltzmann, artificial compressibility,
and projection methods. The flow fields are illustrated using iso-streamline contour plots.
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method, variables at either the last time step (pressure) or at the present time step (velocity)
are used in the evolution. Using the average value helps to reduce errors associated with
temporal discretization and that is why the lattice Boltzmann method has second-order
accuracy in time.

The above differences in the stencils for spatial discretization and the scheme for temporal
discretization are not expected to generate significant differences on the simulation results.
We will see this in the next section.

IV. NUMERICAL SIMULATIONS

To confirm our theoretical analysis, we carried out numerical simulations comparing the
lattice Boltzmann method and the artificial compressibility method. We use cavity flow
as our test case. Simulations start from a quiescent state with uniform pressure inside the

FIG. 3. Time history of velocity at the cavity center. Results from both (a) the lattice Boltzmann and (b) artificial
compressibility methods exhibit oscillations. Otherwise they compare well with results from the projection method
(dashed lines).
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FIG. 4. Comparison of evolution of velocity fields simulated using the lattice Boltzmann, artificial compress-
ibility, and projection methods.
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cavity. The top lid starts moving at a constant velocity at t = 0. We follow the evolution
of the flow field all the way to the final steady state. The simulations were carried out at a
Reynolds number of 1000 and a Mach number of 0.087. A 256 × 256 mesh was used for
all simulations. The computational speeds for the two methods are comparable.

Figure 2 shows the time evolution of the iso-streamline contours simulated using the lat-
tice Boltzmann method and the artificial compressibilility method, as well as the projection
method. The projection method is very accurate for simulating unsteady incompressible
flow [17]. As shown, there is little difference among the simulated flow fields. The steady–
steady results also agree with those in published studies (e.g., [7, 19]).

Like the artificial compressibility method, the lattice Boltzmann method generates a small
oscillation around the primary results due to its compressible nature. Figure 3 compares
the time histories of the velocity at the middle of the cavity by LBM, AC, and projection
methods. The oscillation is noticeable in the very beginning and gradually dissipates as time
increases. The average period of these small oscillation is about 0.17. This agrees well with

FIG. 5. Time history of pressure at the cavity center. The oscillations in pressure are much stronger than those
in velocity for both (a) LBM and (b) AC methods. The dashed lines are results from the projection method.
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the nondimensional characteristic time for the pressure wave propagations in the cavity
(2U/cs or 2M). The velocities from both the LBM and AC methods follow closely those
obtained from the projection method.

The calculated pressures exhibit larger differences among the lattice Boltzmann, artificial
compressibility, and projection methods (Fig. 4). These differences are most evident in the
early stages (t = 2.0 and 4.0), where a horizontal pressure gradient exists cross the cavity
in the background for both LBM and AC results. This pressure gradient is associated with
the pressure wave bouncing back and forth between the left and right walls. The pressure
gradient gradually dissipates and is invisible at t = 14.

The pressure wave can be better revealed from the time history of pressure at the middle
of the cavity (Fig. 5). Obviously, the pressure oscillation is much stronger than the velocity
oscillation, especially in early stages (t < 4.0). Nevertheless, the overall results from both
LBM and AC are consistent with those obtained from the projection method.

It is interesting to note that, contrary to the velocity results, the pressure results from LBM
and AC simulations differ significantly from each other at early times (Fig. 6). Although
the AC simulation did not capture the sharp corners in the velocity history, as the LBM

FIG. 6. Comparison of early stage velocity and pressure for LBM (thin lines) and AC methods (thick lines).
The agreement is much better for the velocity results than for the pressure results.
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simulation did, the velocity results at least follow with each other. The pressure histories,
however, differ considerably from each other at early times. There are indications [20] that
the LBM captures pressure waves accurately and this may be an area where LBM works
better than the artificial compressibility method.

Several sources could contribute to the pressure field discrepancy between LBM and
AC methods. In addition to the difference in stencil selection and temporal discretization,
the lattice Boltzmann method also differs from the artificial compressibility method in its
boundary conditions. Which factor plays the more important role warrants more study.

V. CONCLUSION

In conclusion, we have compared in detail the lattice Boltzmann method and the artificial
compressibility method. It was found that these two methods are closely related to each
other. Both of them satisfy similar macroscopic equations and their computational speeds
are comparable. Although these two methods differ in discrete forms, they yield almost
the same results for velocity fields. In simulations of transient flow, both methods exhibit
oscillatory features but otherwise follow the incompressible flow very well. These results
indicate that both the lattice Boltzmann method and artificial compressibility method can
be used to study transient fluid flows. The pressure wave is a real physical phenomenon
for compressible flows. The amplitude of the accoustic waves can be reduced if proper
parameters are used.

The major difference between the LBM and AC simulations resides in the pressure
results. The simulated pressure fields exhibited a significant difference. Considering the
fact that the lattice Boltzmann method starts with the kinetic theory and has been derived
to conserve high-order isotropy, the lattice Boltzmann method should be more accurate
than the artificial compressibility method in capturing pressure waves. If used to simulate
single-phase weakly compressible flows and if pressure waves are of interest, the lattice
Boltzmann method may have a clear advantage over the artificial compressibility method
in this limit.

APPENDIX

With the equilibrium distribution Eq. (2) and the lattice velocity satisfying Eqs. (5) and
(6), we can obtain the following moments of the equilibrium distribution:

∑
f eq
� = pM2,

∑
f eq
� ea = uM,

∑
f eq
� e2

a = (p� + uu)M2,

∑
f eq
� e3

a = �2 · uM.

Using the first-order Chapman–Enskog expansion, we can express the nonequilibrium dis-
tribution as

f 1
� = −�

(
∂t0 + M−1ea · ∇)

f eq
� . (28)
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The moments of the nonequilibrium distribution can be calculated accordingly:

∑
f 1
� = 0,

∑
f 1
� ea = 0,

∑
f 1
� e2

a = −� [∇u + (∇u)T ].
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